首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5279篇
  免费   841篇
  国内免费   1059篇
化学   4318篇
晶体学   54篇
力学   279篇
综合类   71篇
数学   705篇
物理学   1752篇
  2024年   6篇
  2023年   80篇
  2022年   108篇
  2021年   122篇
  2020年   197篇
  2019年   178篇
  2018年   138篇
  2017年   170篇
  2016年   237篇
  2015年   261篇
  2014年   311篇
  2013年   409篇
  2012年   458篇
  2011年   448篇
  2010年   397篇
  2009年   417篇
  2008年   407篇
  2007年   383篇
  2006年   343篇
  2005年   325篇
  2004年   284篇
  2003年   305篇
  2002年   254篇
  2001年   189篇
  2000年   155篇
  1999年   112篇
  1998年   72篇
  1997年   60篇
  1996年   82篇
  1995年   37篇
  1994年   44篇
  1993年   41篇
  1992年   34篇
  1991年   33篇
  1990年   24篇
  1989年   10篇
  1988年   8篇
  1987年   13篇
  1986年   11篇
  1985年   2篇
  1984年   1篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有7179条查询结果,搜索用时 15 毫秒
21.
A facile liquid‐phase exfoliation method to prepare few‐layer FeOCl nanosheets in acetonitrile by ultrasonication is reported. The detailed exfoliation mechanism and generated products were investigated by combining first‐principle calculations and experimental approaches. The similar cleavage energies of FeOCl (340 mJ m?2) and graphite (320 mJ m?2) confirm the experimental exfoliation feasibility. As a Fenton reagent, FeOCl nanosheets showed outstanding properties in the catalytic degradation of phenol in water at room temperature, under neutral pH conditions, and with sunlight irradiation. Apart from the increased surface area of the nanosheets, the surface state change of the nanosheets also plays a key role in improving the catalytic performance. The changes of charge density, density of states (DOS), and valence state of Fe atoms in the exfoliated FeOCl nanosheets versus plates illustrated that surface atomistic relationships made the few‐layer nanosheets higher activity, indicating the exfoliation process of the FeOCl nanosheets also brought about surface state changes.  相似文献   
22.
23.
Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes ( Re1 and Re2 ), along with their corresponding dinuclear complexes ( Re3 and Re4 ), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1–Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase‐independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase‐independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes.  相似文献   
24.
A copper‐catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois’ reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3‐(trifluoromethyl)‐spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon–carbon single bonds and one carbon–oxygen double bond.  相似文献   
25.
Perovskite is a promising non-noble catalyst and has been widely investigated for the electrochemical oxygen evolution reaction (OER). However, there is still serious lack of valid approaches to further enhance their catalytic performance. Herein, we propose a spin state modulation strategy to improve the OER electrocatalytic activity of typical perovskite material of LaCoO3. Specifically, the electronic configuration transition was realized by a simple high temperature thermal reduction process. M-H hysteresis loop results reveal that the reduction treatment can produce more unpaired electrons in 3d orbit by promoting the electron transitions of Co from low spin state to high spin state, and thus lead to the increase of the spin polarization. Electrochemical measurements show that the catalytic performance of LaCoO3 is strongly dependent on its electronic configuration. With the optimized reduction treatment, the overpotential for the OER process in 0.5 M KOH electrolyte solution at 10 mA cm−2 current density was 396 mV, significantly lower than that of the original state. Furthermore, it can mediate efficient OER with an overpotential of 383 mV under an external magnetic field, which is attributed to the appropriate electron filling. Our results show that electron spin state regulation is a new way to boost the OER electrocatalytic activity.  相似文献   
26.
27.
28.
A comprehensive study on the efficient one‐pot synthesis of polyhedral octaphenylsilsesquioxane (OPS) is reported via the hydrolytic condensation of phenyltrimethoxysilane (PTMS) in the presence of basic catalyst to investigate the specific synthesis mechanism. The synthetic reactions are monitored with real time infrared (RTIR) spectroscopy. Then RTIR coupled with 29Si nuclear magnetic resonance spectroscopy (NMR) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF‐MS) are used to monitor the reactions and identify the intermediary species during the reaction. The rapid hydrolysis of PTMS is detected by RTIR. Contrary to previous reports, the ladder‐like structured species are identified as intermediates during the reaction process. It is suggested that formation of caged T8 OPS is realized through the chain break and rearrangement of the ladder‐like phenyltrimethoxysilanes. Accordingly, a scheme from hydrolysis of the PTMS to formation of the OPS is provided.  相似文献   
29.
Journal of Radioanalytical and Nuclear Chemistry - Na, Mg, Al and Cl in Roman glasses and pottery were analyzed by PIGE with 2.5 MeV protons and 2.0 MeV deuteron activation...  相似文献   
30.
The mechanism of aggregation-induced emission, which overcomes the common aggregation-caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号